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Université Pierre et Marie Curie - Paris 6,

4 place Jussieu, F-75252 Paris cedex 05, France
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relation to the topological string amplitude, extensions to N > 2 supergravity theories,

and applications to automorphic black hole partition functions.
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†Unité mixte de recherche du CNRS UMR 8549

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep092007056/jhep092007056.pdf

mailto:murat@phys.psu.edu
mailto:neitzke@post.harvard.edu
mailto:pioline@lpthe.jussieu.fr
mailto:wally@math.ucdavis.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
7
)
0
5
6

Contents

1. Introduction 1

1.1 Motivation 2

1.2 Summary and outline 4

2. Attractor flows and geodesic motion 6

2.1 Stationary metrics and harmonic maps 6

2.2 Stationary, spherically symmetric black holes and geodesics 8

2.3 Radial quantization of spherically symmetric black holes 10

3. BPS black holes in N = 2 supergravity and twistors 11

3.1 Attractor flow and geodesic flow 11

3.2 Twistor space and swann bundle 15

3.3 The BPS phase space as the twistor space 17

3.4 Quantizing spherically symmetric BPS black holes 19

4. Discussion 23

A. Reducing the supersymmetry conditions 26

B. Minimal N = 2 supergravity 28

C. BPS black holes and geodesic motion in N > 2 SUGRA 31

1. Introduction

In view of the inherent difficulties in quantizing Einstein’s gravity, mini-superspace mod-

els of quantum gravity, where all but a finite number of degrees of freedom consistent

with certain symmetries are retained, have been a popular subject of study, particularly

in quantum cosmology. A space-like analogue of these cosmological models, the radial

quantization of static, spherically symmetric black holes in Einstein and Einstein-Maxwell

gravity has also been much studied [1 – 6]. In the present work we instill supersymmetry

in these early treatments and lay out a quantization scheme for stationary, spherically

symmetric solutions of four-dimensional N = 2 supergravity. Our motivation stems from

recent developments in black hole and string physics, which we now briefly review.
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1.1 Motivation

The microscopic origin of the geometric entropy of supersymmetric black holes in type IIA

string theory compactified on a Calabi-Yau three-fold Y can be investigated by virtue of

several simplifying properties:

(i) The “attractor phenomenon” [7 – 9] implies that the entropy and scalar fields at the

horizon (hence the Kähler moduli of Y ) are functions of the electric and magnetic

charges only.

(ii) Since BPS black holes are extremal, they are not subject to Hawking evaporation,

yet their entropy can be made as large as desired by increasing their charges.

(iii) Being supersymmetric, they are expected to correspond to exact zero-energy eigen-

states (or eigen-matrices) of the microscopic Hamiltonian.

(iv) Due to the tree-level decoupling between vector multiplets and hypermultiplets, the

string coupling may be made as small as desired, such that micro-states can be

described as a gas of weakly coupled open strings or membranes, whose microscopic

entropy can be reliably computed on combinatorial grounds.

Taken together, these simplifications have led to a clear microscopic derivation of the

Bekenstein-Hawking entropy of a class of BPS black holes [10 – 12], accurate in the limit

of large charges (even reproducing the first subleading correction in the M-theory ap-

proach [13]). The modern version of this argument uses holographic duality between M-

theory on the attractor near-horizon geometry [AdS3/Γ] × S2 × Y∗ of a five-dimensional

black string whose reduction to four dimensions produces the black hole of interest, and a

two-dimensional superconformal field theory at the boundary of AdS3 (see e.g. [14, 15] for

reviews and references).

Recently, there have been many efforts to extend this agreement beyond the large

charge regime. On the macroscopic side the geometric entropy, including the effects of

an infinite series of higher-derivative BPS couplings in the low energy effective action, has

been computed [16 – 18]; the result takes a particularly simple form when expressed in

terms of a mixed thermodynamical ensemble with fixed magnetic charges pI and electric

potentials φI [19]. Combined with the relation between higher-derivative BPS couplings

and the topological string amplitude on the Calabi-Yau threefold Y , it suggests a intriguing

relation [19]

Ω(pI , qI) ∼
∫

dφI Ψ∗
top(pI − iφI) Ψtop(pI + iφI) eπφIqI , (1.1)

between the indexed degeneracies Ω(pI , qI) of BPS states with magnetic and electric charges

(pI , qI), and the topological string amplitude Ψtop; the latter should be understood as a

wave function in the real (background-independent) polarization ensuring covariance under

a change of electric-magnetic duality frame [20 – 23]. The equality in (1.1) was conjectured

to hold to all orders in an expansion at large charges, as supported by various explicit

checks for compact [24, 25] and non-compact Y [26 – 28]. The relation (1.1) has been
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Figure 1: Left: the cylinder amplitude in string theory can be viewed either as a trace over the

open string Hilbert space (quantizing along τ) channel) or as an inner product between two wave

functions in the closed string Hilbert space (quantizing along σ). Right: The global geometry

of Lorentzian AdS2 has the topology of a strip; its Euclidean continuation at finite temperature

becomes a cylinder. τ and t are the global and Poincaré time, respectively.

derived recently by evaluating the elliptic genus of M-theory in the above near-horizon

geometry [29 – 32] (see also [33] for an alternative approach using D6-branes).

Both these recent discussions of the subleading corrections to the entropy, as well as

the original derivations in [11 – 13], rely on the possibility of lifting the four-dimensional

black hole to a five-dimensional black string: while this is indeed possible for vanishing or

unit D6-brane charge, in general the five-dimensional parent is a black hole in a singular

Taub-NUT background, possibly accompanied by a black ring [34, 35]. In fact, standard

holography arguments suggest that it should be possible to describe the spectrum of black

hole micro-states in terms of superconformal quantum mechanics on the (disconnected)

boundary of the near-horizon geometry AdS2×S2×Y∗. Unfortunately, this superconformal

quantum mechanics has remained vexingly elusive (see however [36, 37] for some recent

progress).

Lacking a concrete definition of the superconformal quantum mechanics on the bound-

ary of AdS2, it is worthwhile trying to obtain indirect information on its spectrum using

the AdS/CFT correspondence. Specifically, the cylinder-like topology of thermal AdS2

suggests, in analogy with the familiar open/closed string duality, that it should be possible

to derive the partition function of the black hole micro-states — the “open string channel”

— as an overlap of wave functions in a radial quantization scheme — the “closed string

channel” — see figure 1. Performing a radial quantization of gravity is hardly doable in

general, but becomes tractable in a “mini-superspace” truncation where only stationary

spherically symmetric geometries are retained.

It has been proposed to interpret (1.1) in just this way [38]: regard the left-hand

side as the partition function in the Hilbert space of BPS black holes with given values of

the charges (and zero Hamiltonian), and the right-hand side as the overlap of two wave
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functions in the Hilbert space1 of spherically symmetric BPS geometries. To spell this out,

analytically continue φI = iχI to the imaginary axis and define

Ψ±
p,q(χ) ≡ e±

iπχq
2 Ψtop(χ ∓ p) ≡ V ±

p,q · Ψtop(χ) . (1.2)

Equation (1.1) may then be rewritten more suggestively as an overlap of two wave functions,

Ω(p, q) ∼
∫

dχ [Ψ−
p,q(χ)]∗ Ψ+

p,q(χ) . (1.3)

This interpretation assumes one can view the topological amplitude Ψtop as a wave function

for the radial quantization of spherically symmetric geometries; if true, it would provide

a physical interpretation for the wave function property of the topological string partition

function, observed at a formal level in [20].

While the mini-superspace approximation is usually at best ill-controlled, one may hope

that, for the purpose of the indexed partition function of BPS black holes, the truncation

to BPS ground states in the radial channel may be justified. In this respect, note that the

quantization of BPS configurations has been applied in various set-ups [39 – 43], and used

for a derivation of the entropy of two-charge black holes [44].

Finally, we note that further interest in the quantization of attractor flows arises from

the analogy between black hole attractor equations and the equations that determine su-

persymmetric vacua in flux compactifications, and possible applications of the black hole

wave function to vacuum selection in string theory [38].

1.2 Summary and outline

Some of our results have been announced in [45, 15]: the key observation, explained in

section 2, is the equivalence [46] between the radial equations of motion for stationary,

spherically symmetric solutions, and the geodesic motion of a fiducial superparticle on a

pseudo-Riemannian manifold M∗
3; the latter arises by supplementing the four-dimensional

moduli space M4 with the various scalars arising in the dimensional reduction along the

time direction. The electric and magnetic charges (qI , p
I) of the black hole, the ADM mass

m as well as the NUT charge2 k are conserved Noether charges associated to isometries of

M∗
3, whose Poisson brackets obey an extended Heisenberg algebra (2.7). Extremal black

holes correspond to light-like geodesics on M∗
3. The phase space of stationary, spherically

symmetric solutions is the cotangent bundle T ∗(M∗
3), or one of its symplectic quotients

when some conserved charges are held fixed. Quantization is then in principle clear: the

Hilbert space for radial quantization is the space of square-integrable functions on M∗
3,

subject to the Hamiltonian and charge constraints. In Subsection 2.3, we briefly outline

how physical observables can be extracted from a wave function in this Hilbert space; we

note however that conserved charges alone do not select a unique wave function.

This situation is vastly improved when restricting to BPS solutions. As we show in

section 3, supersymmetry strongly restricts the allowed momentum along the geodesic,

1It should be stressed that, just as in conformal field theory on the cylinder, there is no relation between

the spectrum in the open and closed string channels, until string interactions are introduced.
2Bona fide 4D black holes are obtained only for k = 0, but keeping k 6= 0 is a key technical device.
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effectively removing half the degrees of freedom. In the context of N = 2 supergravity,

M∗
3 is an analytic continuation3 of a quaternionic-Kähler space M3 obtained by the c-map

construction from the four-dimensional special Kähler moduli space M4. Supersymme-

try requires the momentum to satisfy certain quadratic constraints (3.7b) built from the

quaternionic vielbein of M3. The geometric structure of the BPS phase space is however

obscure in this formulation.

Instead the supersymmetry constraint is better expressed by introducing the twistor

space Z — a two-sphere bundle over M3 which carries a canonical complex structure,

as well as a Kähler-Einstein metric. It is also useful to introduce the Swann bundle S
over M3, which is a line bundle over Z with a hyperkähler, SU(2) and scale invariant

metric. Physically, the S2 or R
4 fiber of Z or S, respectively, over M3 keeps track of

the Killing spinor preserved by the black hole. Supersymmetric trajectories on the base

M3 then simply correspond to “holomorphic” geodesics in one complex structure on S (i.e.

trajectories whose tangent vector is holomorphic at any point), with no angular momentum

in the fiber. These BPS geodesics descend to holomorphic geodesics on Z. The BPS phase

space is then the twistor space Z itself equipped with its Kähler form. Thus, it is roughly

twice as small as the non-BPS phase space T ∗(M∗
3).

With this reformulation at hand quantization is again in principle clear: the BPS

Hilbert space should be the Kähler quantization of the twistor space Z. Technically, this

is complicated by the fact that Z does not admit non-trivial holomorphic functions, and

moreover has indefinite signature, due to the negative curvature of the base M3. Moreover,

it should be possible to view the BPS Hilbert space as a subspace of the unconstrained

Hilbert space L2(G/K), determined by generalized harmonicity constraints (3.37) quantiz-

ing the classical quadratic constraints (3.7b).

There is a natural conjecture that addresses these concerns all at once: the BPS Hilbert

space should be the sheaf cohomology group H1(Z,O(−ℓ)) for appropriate ℓ. Indeed, there

exists a generalized Penrose transform which relates classes in H1(Z, O(−ℓ)) to functions

on the base M3 solving exactly these partial differential equations [47 – 49]. A special case

of this is the standard Penrose transform, which relates a cohomology class on a subset of

CP
3 to a solution of the conformal Laplacian on a subset of S4 (see [50, 51]). The value

of ℓ determines the spin of the wave function on M3, and could in principle be computed

by a careful quantization of the fermions in the one-dimensional non-linear sigma model,

which we defer to a forthcoming publication [52].

In contrast to the non-BPS case, specifying the conserved charges pI , qI (at vanishing

NUT charge k = 0) now determines a unique wave function Ψp,q, a plane wave in the

complex coordinates on Z adapted to the Heisenberg symmetries. Contour integration of

the BPS wave function on Z leads to the exact wave function (3.43) of a BPS black hole

with charges (p, q) as a function of the four-dimensional vector-multiplet moduli, as well

3 When discussing the case of N = 2 supergravity in section 3, we use for convenience the language

of the Riemannian space M3, and complexify the coordinates. All of our arguments and results could

be formulated in terms of the intrinsic para-quaternionic geometry of M∗
3, which is the real slice directly

related to the physical problem at hand.
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as of the scale U of the time direction.4 The norm of the wave function is maximal at the

classical attractor point(s), but is not exponentially suppressed away from them, contrary

perhaps to expectations. In fact, the effective Planck constant grows as e−U toward the

horizon at U → −∞, leading to large quantum fluctuations. The implications of this result

deserve to be further investigated.

The outline of this paper is as follows. In section 2 we review the general equivalence

between the radial evolution equations for stationary, spherically black holes in 4 dimen-

sions and geodesic flow on the three-dimensional moduli space, and discuss the general

features of the radial quantization for non-supersymmetric black holes. In section 3 we

specialize to N = 2 supergravity, show that twistor techniques allow one to characterize

the geodesics associated to BPS black holes, propose a natural quantization scheme of the

BPS phase space, based on the Kähler quantization of the twistor space, and compute the

exact wave function for a BPS black hole in this framework (some of the material in this

section is a review of the results in [49]). We conclude in section 4 with a discussion of the

relation of our wave function to the topological string amplitude, applications to symmetric

N = 2 and N > 2 supergravities, and to automorphic counting functions for black hole

micro-states, and other directions. In appendix A we supply details on the reduction of the

supersymmetry conditions from 4 to 3 dimensions. In appendix B we discuss pure N = 2

supergravity in four dimensions. In appendix C, we comment on supergravity theories with

N = 4 and N = 8.

2. Attractor flows and geodesic motion

We begin by reformulating the equations of motion for stationary solutions in four dimen-

sions in terms of a gravity-coupled non-linear sigma-model on an extended moduli space

M∗
3 in three Euclidean dimensions. By assuming spherical symmetry the problem is fur-

ther reduced in Subsection 2.2 to the geodesic motion of a fiducial particle on M∗
3. In

Subsection 2.3 we quantize this mechanical system. No assumption about supersymmetry

is made in this section.

2.1 Stationary metrics and harmonic maps

We consider Einstein gravity in four dimensions coupled to nA Abelian gauge fields AI
4 and

nS scalar fields zi with action

S4 =

∫

d4x

[

−1

2

√−γ R[γ] − gij dzi∧ ⋆dzj + F I∧
(1

4
(ImN )IJ ∧ ⋆F J− 1

8
(ReN )IJF J

)

]

.

(2.1)

Here γ denotes the four-dimensional metric, gij (i = 1 . . . nS) the metric on the moduli

space M4 where the (real) scalars zi take their values, F I = dAI
4 (I = 1 . . . nA) are the

field strengths of the Maxwell fields with complexified gauge couplings NIJ(zi) = (N IJ)−1.

4This wave function was first computed in [49], where mathematical aspects of the twistorial approach

to black holes were studied. In this paper we focus on the physical aspects of this approach.
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Now we restrict our attention to stationary configurations. The most general stationary

metric has the form

ds2
4 = −e2U (dt + ω)2 + e−2Uds2

3 , (2.2)

where the scalar U , one-form ω and line element ds2
3 are functions on the spatial slice Σ

and independent of t. Similarly we decompose the vector fields as

AI
4 = ζI(dt + ω) + AI

3 , (2.3)

into pseudo-scalars ζI and one-forms AI
3 defined on Σ and assume that the scalars zi are

independent of time. The equations of motion for (U,ω, ds2
3, ζ

I , AI
3) may be obtained by

reducing action S4 along the time direction. In three dimensions, the one-forms AI
i and ω

can be dualized into axionic scalars ζ̃I and σ. Thus, the four-dimensional theory reduces

to a non-linear sigma model coupled to Euclidean gravity,

S3 =

∫

d3x (
√

g3 R[g3] − gmn dφm ∧ ⋆dφn) , (2.4)

whose the coordinates φm on the target space M∗
3 include the scalar fields zi from four

dimensions together with U , ζI , ζ̃I , σ. In contrast to the usual Kaluza-Klein reduction

along a space-like direction, the metric gmn on M∗
3 has indefinite signature:

ds2
M∗

3

= dU2 +
1

2
gijdzidzj + e−4U

(

dσ − ζ̃IdζI + ζIdζ̃I

)2
(2.5)

+
1

2
e−2U

[

(ImN )IJdζIdζJ +(ImN )IJ
(

dζ̃I ! +(ReN )IKdζK
)(

dζ̃J +(ReN )JLdζL
)]

,

(recall that (ImN )IJ is negative definite). It is related to its Riemannian counterpart M3

(from standard Kaluza-Klein reduction, see e.g. [53]) by analytic continuation (ζI , ζ̃I) →
i(ζI , ζ̃I) [45]. Thus, stationary solutions in four dimensions are given by harmonic maps

from the (in general curved) three-dimensional spatial slice to M∗
3 [46].

Importantly, M∗
3 possesses 2n + 2 isometries, reflecting symmetries of the stationary

sector of the four-dimensional theory: these are the shift symmetries of AI , ÃI , ω, as well

as rescalings of time t. The Killing vector fields generating these isometries are

pI = ∂ζ̃I
+ ζI∂σ , qI = ∂ζI − ζ̃I∂σ , k = ∂σ , m = −∂U − ζI∂ζI − ζ̃I∂ζ̃I − 2σ∂σ , (2.6)

and satisfy the Lie algebra

[pI , qJ ] = −2δI
J k , [m, pI ] = pI , [m, qI ] = qI , [m,k] = 2k . (2.7)

This notation anticipates the fact that the associated conserved quantities will be the

electric and magnetic charges, NUT charge, and ADM mass of the black hole. In particular,

the electric and magnetic charges pI , qI satisfy an Heisenberg algebra graded by the ADM

mass m, with center k.

– 7 –
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2.2 Stationary, spherically symmetric black holes and geodesics

We now further restrict to spherically symmetric solutions. The metric on the spatial slice

Σ can be parameterized as

ds2
3 = N2(ρ) dρ2 + r2(ρ) (dθ2 + sin2 θ dφ2) , (2.8)

while the scalars become functions of ρ only. The scalar curvature of Σ is

√
g3 R(3) = 2 sin θ

[

(r′)2

N
+ N − d

dρ

(

2rr′

N

)]

, (2.9)

where the prime denotes a ρ-derivative. Substituting in (2.4), integrating over the angles

θ, φ and dropping a total derivative term leads to

S1 =

∫

dρ

[

N

2
+

1

2N

(

r′2 − r2 gmn φ′m φ′n)

]

. (2.10)

This Lagrangian describes the motion of a fiducial particle on a cone5 C over the d =

3 moduli space M∗
3. The einbein N on the particle worldline ensures invariance under

reparametrizations; its equation of motion enforces the mass shell condition

r′2 − r2 gmn φ′m φ′n = N2 , (2.11)

or equivalently, the Wheeler-De Witt (or Hamiltonian) constraint

HWDW = (pr)
2 − 1

r2
gmnpmpn − 1 ≡ 0 , (2.12)

where pr, pm are the canonical momenta conjugate to r and φm.

Solutions are thus massive geodesics on the cone C, with fixed unit mass. The motion

separates into geodesic motion on the base of the cone M∗
3, with affine parameter τ such

that dτ = N dρ/r2, and motion along the radial direction r,

(pr)
2 − C2

r2
− 1 ≡ 0 , gabpapb ≡ C2 , (2.13)

where pr = r′/N and pm = r2φ
′m/N . It is interesting to note that the radial motion is

governed by the same Hamiltonian as in [57, 55], and therefore exhibits one-dimensional

conformal invariance6

The motion along r is easily integrated in the gauge N = 1 to

r =
C

sinh(Cτ)
, ρ =

C

tanh(Cτ)
. (2.14)

By looking at the behavior of the metric near τ = ∞, it is easy to see that the integra-

tion constant C is related to the Hawking temperature TH and black hole entropy SBH

through [9]

C = 2SBHTH . (2.15)

5A similar system arises in mini-superspace cosmology [54, 55]. Higher-derivative corrections to the

geodesic motion arising from R2 corrections to the four-dimensional action have been discussed in [56]
6This is not to be confused with the putative conformally invariant boundary quantum mechanics.
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Non-extremal black holes have C > 0 (the opposite sign results in a naked singularity),

while extremal black holes correspond to light-like geodesics,7 with C = 0. In this case,

the first and last term in (2.12) must cancel,

r′ = N , (2.16)

leading to flat spatial slices Σ. In the gauge N = 1, Equations (2.14) imply that the affine

parameter is the inverse of the radial distance, τ = 1/r = 1/ρ. While one may dispose of

the radial variable r altogether, it is however advantageous to retain it for the purpose of

defining observables such as the horizon area, AH = 4πe−2Ur2|U→−∞ and the ADM mass

m = r(e2U − 1)|U→0.

As anticipated in (2.7), the isometries of M∗
3 lead to conserved Noether charges,

qI dτ = e−2U
[

(ImN )IJdζJ + (ReN )IJ (ImN )JL
(

dζ̃L + (ReN )LMdζM
)]

− 2k ζ̃I ,

pI dτ = e−2U (ImN )IL
(

dζ̃L + (ReN )LMdζM
)

+ 2k ζI , (2.17)

k dτ = 2 e−4U
(

dσ − ζIdζ̃I + ζ̃IdζI

)

,

identified as the electric, magnetic and NUT charges pI , qI , k. Their Poisson brackets of

course obey the same algebra as the Killing vectors (2.7).

The NUT charge k is related to the off-diagonal term in the metric (2.2) via ω =

k cos θ dφ. When k 6= 0, the metric

ds2
4 = −e2U (dt + k cos θ dφ)2 + e−2U [dρ2 + r2(dθ2 + sin2 θ dφ2)] , (2.18)

has closed timelike curves along the compact φ coordinates near θ = 0, all the way from

infinity to the horizon. Bona fide black holes have k = 0, which corresponds to a “classical”

limit of the Heisenberg algebra (2.7).

Using the conserved charges (2.17), one may express the Hamiltonian for affinely pa-

rameterized geodesic motion on M∗
3 as

H ≡ pmgmnpn =
1

4
p2

U +
1

2
pzigijpzj − e2UVBH +

1

4
k2e4U , (2.19)

where pU , pzi are the momenta canonically conjugate to U, zi,

VBH(p, q, z) = −1

2
(q̂I −(ReN )IJ p̂J)(ImN )IK(q̂K −(ReN )KLp̂L)− 1

2
p̂I(ImN )IJ p̂J , (2.20)

and

p̂I = pI − 2kζI , q̂I = qI + 2kζ̃I . (2.21)

Following [9], we refer to VBH as the “black hole potential”, keeping in mind that it

contributes negatively to the actual potential governing the Hamiltonian motion V =

−e2UVBH + k2e4U . For k = 0, the motion along (ζI , ζ̃I , σ) separates from that along

(U, zi), effectively producing a potential for these variables. The attractor flow equations,

to be discussed in section 3.1 below, correspond to the restricted class of supersymmetric

solutions to (2.19).

7This is a necessary condition only, in general one must also fine-tune the velocities at infinity in order

to ensure a smooth solution [58].
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2.3 Radial quantization of spherically symmetric black holes

Having shown the equivalence between the radial evolution equations for stationary, spher-

ically symmetric geometries and the geodesic motion of a fiducial particle on the cone C
over M∗

3, quantization is now in principle straightforward: replace functions on the clas-

sical phase space T ∗(C) by square integrable wave functions on C, satisfying mass-shell

(Wheeler-De Witt) condition

[

− ∂2

∂r2
+

∆3

r2
− 1

]

Ψ(r, U, zi; ζI , ζ̃I , σ) = 0 . (2.22)

Here, ∆3 is the Laplace-Beltrami operator on M∗
3, (the quantum analogue of the Hamil-

tonian −4H)

∆3 = ∂2
U + ∆4 + e4U∂2

σ + 2e2U
[

(ImN )IJ ∇I ∇J (2.23)

+(ImN )IJ
(

∇I − (ReN )IK∇K
) (

∇J − (ReN )JL∇L
)]

,

while ∆4 is the Laplace-Beltrami operator on the four-dimensional moduli space M4,

∇I = ∂ζI − ζ̃I∂σ, ∇I = ∂ζ̃I
+ ζI∂σ , (2.24)

and we have rescaled the wave function Ψ with appropriate powers of r and eU to cancel

the ∂r and ∂U linear derivatives in the above equations.

The wave equation separates into a Bessel-type equation for the radial direction r and

a Laplace equation along M∗
3:

Ψ(r, U, zi; ζI , ζ̃I , σ) =
√

r
[

α J 1

2

√
1−4C2(r) + β Y 1

2

√
1−4C2(r)

]

ΨC(U, zi, ζI , ζ̃I , σ) , (2.25)

where
[

∆3 + C2
]

ΨC(U, zi, ζI , ζ̃I , σ) = 0 . (2.26)

In practice, we may also be interested in wave functions which are eigenmodes of the electric

and magnetic charge operators, given by the differential operators in (2.6),

ΨC(U, zi, ζI , ζ̃I , σ) = ΨC,p,q(U, zi) ei(pI ζ̃I+qIζI) , (2.27)

which is then automatically a zero eigenmode of the NUT charge k. Note however that,

due to the Heisenberg algebra (2.7), it is impossible to simultaneously diagonalize the ADM

mass operator M , unless either pI or qI vanish. Equation (2.26) then implies that the wave

function ΨC,p,q(U, zi) should satisfy the quantum version of (2.19),

[

∂2
U + ∆4 + 4e2UVBH(p, q, z) + C2

]

ΨC,p,q(U, zi) = 0 . (2.28)

The wave function ΨC,p,q(U, zi) is the main object of interest in this paper, and describes

the quantum fluctuations of the scalars zi as a function of the scale eU of the time direction

(i.e. effectively as a function of the distance to the horizon). Alternatively, one may study

the full wave function Ψp,q(r, U, zi) as a function of the radius r: changing variable from

r to AH = 4πr2e−2U gives access to the quantum fluctuations of the horizon area AH .
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In the absence of supersymmetry, it is hardly surprising that the wave function is not

uniquely specified by the charges and extremality parameter, as the condition (2.28) leaves

an infinite dimensional Hilbert space.

An important aspect of quantization is the definition of an inner product: as in similar

instances of mini-superspace quantization, the L2 norm on the space of functions on C is

inadequate for defining expectation values, since it involves an integration along the “time”

direction r at which one is supposed to perform measurements. The customary solution to

this problem is to note that (2.22) is a Klein-Gordon-type equation, and to replace the L2

norm on C by the r-independent Wronskian

〈Ψ|Ψ〉 =

∫

dU dzi dζI dζ̃I dσ e−2(nV +2)U
√

det(gij)Ψ∗ ↔
∂r Ψ . (2.29)

For factorized wave functions (2.25), the resulting norm is proportional to the L2 norm on

M∗
3. A severe malady of this construction is that the above scalar product is not posi-

tive definite. The standard remedy is to perform a “second quantization” and replace the

wave function Ψ by an operator; a similar procedure can be followed here, in analogy with

“third quantization” in quantum cosmology [59]. It is reasonable to expect that this proce-

dure describes multi-centered geometries. Fortunately, as we shall see in the next section,

the situation is much improved for BPS states, since the Klein-Gordon product (2.29) is

(formally) positive definite when restricted to this sector.

3. BPS black holes in N = 2 supergravity and twistors

We now specialize to supersymmetric black holes in N = 2 supergravity. In Subsection 3.1,

we review the quaternionic-Kähler geometry of the resulting M∗
3, identify the geodesics

which correspond to black holes preserving half of the supersymmetries, and recover the

known form of the attractor equations. In Subsection 3.2, we outline the construction of

the twistor space Z and Swann space S over M3. These provide the most convenient

framework to formulate and solve the BPS conditions. In Subsection 3.3, we show that the

phase space of BPS black holes is isomorphic to the twistor space Z, and that BPS black

holes correspond to holomorphic geodesics on S. Finally, in Subsection 3.4 we propose a

quantization scheme for spherically symmetric BPS configurations, based on the Penrose

transform between cohomology classes valued in a certain holomorphic line bundle on Z
and solutions of certain second order partial differential equations on the quaternionic-

Kähler base M3. In this framework, we obtain the exact wave function for a BPS black

hole with fixed electric and magnetic charges, and discuss some of its properties. While

most of the mathematical results in this section were obtained in [49], our aim here is to

illuminate the physics motivations behind these mathematical constructions.

3.1 Attractor flow and geodesic flow

Four-dimensional N = 2 supergravity with nV vector multiplets consists of nS/2 = nV

complex scalars, nA = nV + 1 Maxwell fields (including the graviphoton), two gravitini

and nV gaugini (hypermultiplets may be safely ignored as they are not sourced by black
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holes). The couplings in the four-dimensional action (2.1) are determined in terms of a

holomorphic prepotential function F (XI). The manifold M4 is a projective special Kähler

manifold with Kähler potential

K(zi, z̄j) = − log K(X, X̄) = − log
[

i
(

X̄IFI − XI F̄I

)]

, (3.1)

where FI := ∂F (X)/∂XI , I = 0 . . . nV , while the gauge kinetic terms are related to the

second derivative τIJ := ∂I∂JF (X) via

NIJ = τ̄IJ + 2i
(Imτ · X)I (Imτ · X)J

X · Imτ · X . (3.2)

The scalar manifold M3 obtained by Kaluza-Klein reduction to three dimensions is

a quaternionic-Kähler space, obtained by the “c-map” from the special Kähler manifold

M4 [60 – 62, 53]. The analytically continued M∗
3 is a para-quaternionic-Kähler space, which

we shall refer to as the c∗-map of M4. While M3 has a Riemannian metric with special

holonomy USp(2)×USp(2nV +2), M∗
3 has a split signature metric with special holonomy

Sp(2, R)×Sp(2nV +2, R). As mentioned in the introduction, we work for convenience with

the more familiar Riemannian space M3, leaving the analytic continuation implicit most

of the time.

In addition to the bosonic fields appearing in (2.10), the three-dimensional Lagrangian

contains also the fermionic partners of φm and of the graviton, resulting in N = 4 Euclidean

supergravity in three dimensions. Upon further restriction to spherically symmetric solu-

tions, one expects to find fermionic partners for the one-dimensional graviton N and the

bosonic fields r, φm in R
+ × M∗

3, such that the resulting Lagrangian has N = 4 super-

symmetry in one dimension.8 The resulting one-dimensional supergravity model will be

presented in [52]. For the present purposes, we only require the supersymmetry transfor-

mations of the fermions, the reduction of which is given in appendix A. To describe this

explicitly, let us recall some basic features of quaternionic-Kähler manifolds. The restricted

holonomy implies that the complexified tangent bundle of M3 splits locally as

TCM3 = E ⊗ H , (3.3)

where E and H are complex vector bundles of respective dimensions 2nV + 2 and 2. This

decomposition is preserved by the Levi-Civita connection. The latter decomposes into its

USp(2) and USp(2nV + 2) parts p and q,

ΩBB′

AA′ = pB′

A′δB
A + qA

BδB′

A′ , (3.4)

where ǫA′B′ , ǫAB are the antisymmetric tensors invariant under USp(2), USp(2nV + 2)

respectively. The change of basis from TCM3 to E ⊗ H is achieved by a covariantly

constant “quaternionic vielbein” V AA′
= V AA′

m dφm (A = 1, . . . , 2nV + 2, A′ = 1, 2, m =

8Note that a spherically covariant Killing spinor in three dimensions decomposes as ǫA′

α = ǫA′

(ρ)χα

where χα is a Killing spinor on S2. As a result, the number of supercharges is halved by the spherical

reduction.
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1, . . . , 4nV + 4), from which one can construct the metric ds2, as well as three almost

complex structures and their two-forms ωi,

ds2 = ǫA′B′ ǫAB V AA′ ⊗ V BB′

, ωi = ǫA′B′ (σi)B
′

C′ ǫAB V AA′ ∧ V BC′

. (3.5)

The fermions in the non-linear N = 4 sigma model on M3 transform under USp(2nV + 2)

and are USp(2)-inert,9 with supersymmetric variations [52]

δχA = − 1

N
V AA′

m

◦
φm ǫA′ , (3.6)

where
◦
φ m is the supercovariant time derivative of φm, which reduces to the usual time

derivative φ
′m for zero value of the worldline gravitino.

From (3.6), it is apparent that supersymmetric solutions are obtained when V AA′
has

a null eigenvector,

SUSY ⇔ ∃ ǫA′ | V AA′

ǫA′ = 0 (3.7a)

⇔ ǫA′B′ V AA′

V BB′

= 0 . (3.7b)

For fixed ǫA′
, these are 2nV +2 conditions on the velocity vector φ

′m at any point along the

geodesic, removing half of the degrees of freedom from the generic trajectories. We now

demonstrate that these conditions imply the usual attractor flow equations generalized to

include the NUT charge.

For the case of the c-map M3, the quaternionic vielbein was computed explicitly in [53].

After analytic continuation, one obtains

V AA′

=











iu v

ea iEa

−iĒā ēā

−v̄ iū











. (3.8)

where ea = ea
i dzi is a vielbein of the special Kähler manifold, ea

i ēāδaā = gi, and

u = eK/2−UXI
(

dζ̃I + NIJdζJ
)

, (3.9a)

v = dU − i e−2U
(

dσ − ζ̃IdζI + ζIdζ̃I

)

, (3.9b)

Ea = e−Uea
i g

if̄ I


(

dζ̃I + NIJdζJ
)

. (3.9c)

Expressing dζI , dζ̃I , dσ in terms of the conserved charges (2.17), the entries in the quater-

nionic vielbein may be rewritten as

u = ieK/2+UXI
[

qI − 2kζ̃I −NIJ(pJ + 2kζJ)
]

dτ , (3.10a)

v = dU − i

2
e2Uk dτ , (3.10b)

ea = ea
i dzi , (3.10c)

Ea = i eUeaigif̄ I


[

qI − 2kζ̃I −NIJ(pJ + 2kζJ)
]

dτ . (3.10d)

9In fact, the N = 4 one-dimensional sigma model is a reduction of the original N = 2 locally supersym-

metric sigma model in four dimensions [63].
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Now we return to the supersymmetry variation of the fermions (3.6): the existence of ǫA′

such that δχA vanishes implies that the first column of V has to be proportional to the

second, hence

dU

dτ
− i

2
e2Uk = −i eiθ eK/2+U XI

(

qI − 2kζ̃I −NIJ(pJ + 2kζJ)
)

, (3.11a)

dzi

dτ
= −i eiθ eU gif̄ I



(

qI − 2kζ̃I −NIJ(pJ + 2kζJ)
)

, (3.11b)

where the phase θ is determined by requiring the reality of U . For vanishing NUT charge,

this becomes the well-known attractor flow equations [7 – 9, 64, 65]

dU

dτ
= −eU |Z| , (3.12a)

dzi

dτ
= −2 eU gi∂|Z| , (3.12b)

where Z is the central charge

Z(p, q; zi, z̄ ī) = eK/2
(

pIFI − qIX
I
)

. (3.13)

The equivalence between the attractor flow equations on M4 and supersymmetric geodesic

motion on M3 was observed long ago in [66], and is a consequence of the T-duality between

black holes and instantons [67 – 69].

Having reproduced the usual form of the attractor equations, we return to the super-

symmetry conditions (3.7), and comment on their structure. The quaternionic viel-bein

V AA′
/dτ = V AA′

dφm/dτ can be viewed as a 2 × (2nV + 2) matrix of functions on the

unconstrained phase space T ∗(M3), after expressing the velocity dφm/dτ in terms of the

momentum pm. Similarly, the quadratic constraints

HAB ≡ ǫA′B′ V BB′

V AA′

/dτ2 = 0 , (3.14)

are functions on the unconstrained phase space, corresponding to the 2× 2 minor determi-

nants of the matrix V AA′
. The constraints HAB ≡ 0 are first class, in the sense that their

Poisson brackets vanish on the constrained locus. Indeed, computations show that

[HAB,HCD] = −8V[AA′ qA′

B]
E
[C HD]E . (3.15)

where qA′E
BC is the USp(2nV +2) connection, whose one-form index has been traded to A′E

using the inverse of the quaternionic vielbein. The constraints HAB are not independent

however, since the rank one condition on V AA′
enforces only 2nV + 1 conditions on its

4nV + 4 entries. Since each first class constraint reduces the dimension by two, the real

dimension of the BPS phase space is 8nV + 8 − 2(2nV + 1) = 4nV + 6. The symplectic

structure on this space is however obscure from this construction. In the next section, we

show that once the Killing spinor ǫA′
is included, the BPS phase space is realized as the

twistor space Z of M3, with complex dimension 2nV + 3.

– 14 –



J
H
E
P
0
9
(
2
0
0
7
)
0
5
6

3.2 Twistor space and swann bundle

The one-dimensional N = 4 non-linear sigma model on M3 is unusual because the three

complex structures responsible for extended supersymmetry are not integrable. This is

hardly surprising because the model must also be coupled to worldline gravity. Exactly

such a study is underway [52], however, for BPS configurations, this problem can also be

circumvented by a standard mathematical construction which physically incorporates the

Killing spinor in the black hole geometry, as we discuss further in Subsection 3.3.

Let S be the total space10 of the bundle H over M3. This 4nV + 8 dimensional space,

known as the Swann bundle or hyperkähler cone, admits a dilation and SU(2)-invariant

hyperkähler metric [70, 71]

ds2
S = |Dπ|2 +

ν

4
R2 ds2

M3
. (3.16)

Here, πA′
are coordinates in the R

4 fiber of H, R2 = |π1|2 + |π2|2 is the USp(2) invariant

norm, and DπA′
is the covariant exterior derivative of πA′

,

DπA′

= dπA′

+ pA′

B′πB′

, (3.17)

and ν is related to the scalar curvature of the base by R = 4n(n+2)ν. In particular, ν < 0,

and S has quaternionic Lorentzian signature (1, nV + 1) and holonomy USp(2, 2nV + 2).

The spin connection Ωℵ
i

and the covariantly constant quaternionic vielbein Vℵ (where ℵ ∈
{A,A′} runs over two more indices than A) can be simply obtained from the quaternionic

vielbein V AA′
on the base M3 via

Vℵ =

(

DπA′

V AA′
πA′

)

, Ωℵ
i =

(

pA′

B′ V AA′

VBB′ qA
B

)

. (3.18)

The vielbein Vℵ gives a set of (1, 0)-forms on S (for a particular complex structure), which

together with V̄ span the cotangent space of S.

It is useful to view the unit sphere S3 in H as a Hopf fibration and choose coordinates

eiϕ =
√

π2/π̄2 , z = π1/π2 , (3.19)

on the U(1) fiber and S2, respectively. The hyperkähler cone metric (3.16) can then be

rewritten as

ds2
S = dR2 + R2

(

σ2
1 + σ2

2 + σ2
3 +

ν

4
ds2

M3

)

, (3.20)

where the triplet of 1-forms

σ1 + iσ2 =
dz + P
1 + zz̄

, σ3 = dϕ − i

2(1 + zz̄)
(z̄dz − zdz̄) − i

r2
πA′

pB′

A′ π̄B′ , (3.21)

and P is the projectivized USp(2) connection,

P = p1
2 + z(p1

1 − p2
2) − z2p2

1 . (3.22)

10More precisely, S is the total space of H×/Z2, where H× is the bundle H with the zero section deleted

and Z2 acts as πA′

→ −πA′

on the fiber of H .
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Figure 2: Bundles over the quaternionic-Kähler space M3.

Hence S is a real cone over a 4nV + 7-dimensional 3-Sasaki space J , which in turn is a

U(1) bundle over a 4nV + 6-dimensional “twistor” space Z with metric

ds2
Z = σ2

1 + σ2
2 +

ν

4
ds2

M3
=

|dz + P|2
(1 + z̄z)2

+
ν

4
ds2

M3
. (3.23)

The twistor space Z is an S2 bundle over M3, with complex Lorentzian signature (1, 2nV +

2), see figure 2. The twistor space can also be obtained from S directly as the Kähler

quotient by the U(1) symmetry shifting the coordinate ϕ (at unit value of the moment

map |π|2). In particular, it carries a canonical complex structure whose Kähler form is

ωZ = i
|dz + P|2
(1 + z̄z)2

− iν

2(1 + zz̄)

[

(z + z̄)ω1 + i(z − z̄)ω2 + (1 − zz̄)ω3
]

, (3.24)

where ωi are the quaternionic 2-forms in (3.5).

Isometries on M3 lift to holomorphic isometries on Z [72, 73], and tri-holomorphic

isometries on S. A set of complex coordinates ξI , ξ̃I , α on the Swann bundle S and twistor

space Z adapted to the Heisenberg symmetries was constructed in [49]. In terms of these

coordinates, the complexified Heisenberg algebra acts as

P I = ∂ξ̃I
− ξI∂α , QI = −∂ξI − ξ̃I∂α , K = ∂α . (3.25)

Only the real Heisenberg algebra P I + P̄ I , QI + Q̄I ,K + K̄ is an isometry of Z, however.

The Kähler-Einstein metric on Z may be obtained from the Kähler potential [49]

KZ =
1

2
log

{

Σ2

[

i

2
(ξI − ξ̄I),

i

2
(ξ̃I − ¯̃ξI)

]

+
1

16

[

α − ᾱ + ξI ¯̃ξI − ξ̄I ξ̃I

]2
}

+ log 2 , (3.26)

where Σ(φI , χI) is the Hesse potential associated to the special geometry of the four-

dimensional moduli space; namely, the Legendre transform of the “topological free energy”
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with respect to the magnetic charge pI [74 – 76],

Σ(φI , χI) = 〈 1

2i

[

F (pI + iχI) − F̄ (pI − iχI)
]

+ ipIχI〉pI . (3.27)

Note in particular that Σ has the same functional dependence on the “potentials” (φI , χI)

as the tree-level black hole entropy on the charges (pI , qI), and is invariant under symplectic

rotations of (φI , χI).

The complex coordinates on S can be obtained by supplementing (ξI , ξ̃I , α) with one

complex coordinate v♭ such that U(1) acts by rotating the phase of v♭, and

R2 = |v♭|2 eKZ . (3.28)

This quantity χ = R2 in fact equals the hyperkähler potential of S, a simultaneous Kähler

potential for its two-sphere’s worth of complex structures.

The relation between the complex coordinates ξI , ξ̃I , α (and their complex conjugates)

on Z and the coordinates U, zi, ζI , ζ̃I , σ on the quaternionic-Kähler base as well as the fiber

coordinate z ∈ CP
1 was worked out in [49] by forming R

× × SU(2) invariants, leading to

the “twistor map”

ξI = ζI + 2i eU+K(X,X̄)/2
(

zX̄I + z−1XI
)

, (3.29a)

ξ̃I = ζ̃I + 2i eU+K(X,X̄)/2
(

z F̄I + z−1 FI

)

, (3.29b)

α = σ + ζI ξ̃I − ζ̃Iξ
I , (3.29c)

where (XI , FI) and K(X) have been defined in section 3.1. In the para-quaternionic case

relevant for black holes, the holomorphic and anti-holomorphic variables become indepen-

dent real variables. This may be further lifted to S by using

(

π1

π2

)

= 2 eU
√

v♭

(

z
1

2

z−
1

2

)

. (3.30)

A key feature is that, for a fixed point on the base, the complex coordinates ξI , ξ̃I , α depend

rationally on the coordinate z in the twistor fiber; said differently, the fiber over any point

on the base is rationally embedded in Z. This distinctive property of twistor spaces is the

origin of the Penrose transform between holomorphic sections of O(−ℓ) on Z and harmonic

sections on M3. We shall return to this topic in section 3.4.

3.3 The BPS phase space as the twistor space

We now return to physics and show that supersymmetric black holes correspond to a

special class of geodesics on M3 which can be lifted holomorphically to the Swann space

S. We emphasize again (see Footnote 3 of the introduction) that M3 and related spaces

are complexified, despite our use for convenience of the language appropriate to the real

slice M3.

First we observe that geodesic motion on M3 is equivalent to geodesic motion on S,

provided one restricts to trajectories with vanishing angular momentum along S3. Indeed,

– 17 –



J
H
E
P
0
9
(
2
0
0
7
)
0
5
6

geodesic motion on S decouples into a radial motion along R, with a conformal Hamiltonian

of the same type as in (2.13), and geodesic motion along the 3-Sasakian base J . The

restriction to zero angular momentum along S3 can be enforced by gauging the SU(2)

isometries σi → σi + Ai, and restricting to the SU(2)-singlet sector.

Similarly, the one-dimensional N = 4 non-linear sigma model on M3 should be ob-

tained by gauging a N = 4 non-linear sigma model on the Swann space S, with fermions

ψℵ now transforming under USp(2, 2nV + 2). As S is hyperkähler, its USp(2) curvature

vanishes, so that the supersymmetry variations on S split into holomorphic and antiholo-

morphic parts,

δψℵ = Vℵǫ , δψ̄ℵ̄ = V̄ℵǭ . (3.31)

where Vℵ is the holomorphic vielbein introduced in (3.18). Taking advantage of the SU(2)

symmetry on S, which rotates ǫ into ǭ, we can assume that the unbroken symmetry gener-

ator is ǭ. Thus, we could define supersymmetric geodesics on S as those whose momentum

is purely holomorphic at any point along the trajectory, namely V̄ ℵ̄ = 0. Using (3.18), this

condition may be rewritten as

BPS ⇔
{

DπA′
= 0 ,

V AA′
πA′ = 0 .

(3.32)

Now let us compare these conditions with the conditions defining BPS black holes.

Upon identifying the coordinate in the fiber πA′
with the supersymmetry parameter ǫA′

,

we recognize the first equation in (3.32) as the condition (3.7) for supersymmetric motion

on the quaternionic-Kähler base. In appendix A, we show that the radial dependence of

the Killing spinor preserved by the black hole solution is indeed governed by DǫA′
= 0,

consistently with the second equation in (3.32). Thus, we may identify the R
4 fiber of the

Swann bundle as the Killing spinor preserved by the black hole geometry.11 Similarly, the

coordinate z ∈ P
1 on the twistor space Z keeps track of the projectivized Killing spinor,

z = ǫ1/ǫ2.

We conclude from this discussion that stationary, spherically symmetric BPS black

holes correspond to holomorphic geodesics on the Swann space S, with vanishing momen-

tum along the S3 fiber. This description will be very useful for the purpose of quantizing

BPS black holes, as explained in the next Subsection.

This reformulation is already advantageous at the classical level: in particular, it al-

lows to integrate the BPS equations of motion explicitly, and recover the known spherically

symmetric BPS solutions in N = 2 supergravity [49]. The key observation is that, as a

result of the vanishing of the anti-holomorphic momenta12 p̄ℵ̄ ≡ V̄ ℵ̄ ≡ 0, the holomorphic

coordinates zℵ on S are constants of motion. Moreover, the holomorphic momenta pℵ are

also constants of motion, related to the conserved charges pI , qI , k associated to the Heisen-

berg symmetries. Using the Kähler property of the metric, the equation pℵ = gℵℵ̄dzℵ̄/dτ

11Another way to see that R2 = |π|2 is unrelated to the cone coordinate r on C is that supersymmetric

geodesic motion on S is necessarily light-like whereas, as argued below (2.12), the geodesic motion on C has

to be massive.
12We deviate from [49] by an overall complex conjugation.
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can be integrated into

∂zℵχ = pℵτ + cℵ , (3.33)

where cℵ are integration constants. This equation may be solved to express z̄ℵ̄ in terms of

the constants of motion zℵ, pℵ and cℵ and the time τ . By inverting the twistor map (3.29),

the geodesic motion on S can be projected to the base M3. If we also require that the

momentum for the U(1) ⊂ SU(2) preserving the complex structure on S should vanish,

we recover the known spherically symmetric solutions of N = 2 supergravity. We note

that (after an appropriate redefinition of pℵ [49]) the BPS geodesics on M3 depend on the

constants zℵ only via overall shifts of ζI , ζ̃I , σ, corresponding to gauge symmetries in four

dimensions. The number of physical parameters labeling the solution is therefore 2nV + 4,

or 2nV + 3 after enforcing U(1) invariance.

This reformulation also allows us to clarify the geometric nature of the BPS phase

space. In particular, the BPS constraints p̄ℵ̄ ≡ 0 are manifestly first class. The BPS phase

space is the symplectic quotient of the unconstrained phase space T ∗(S), with symplectic

form ω = dzℵ ∧ dpℵ + dz̄ℵ̄ ∧ dp̄ℵ̄ by the Hamiltonian vector fields ∂z̄ℵ̄ associated to these

constraints, corresponding to the afore-mentioned gauge symmetries in four dimensions.

A standard trick to treat first class constraints is to augment them with gauge fixing

constraints, such that the total system is second class. A simple choice of gauge fixing

constraints is to fix the value of z̄ℵ̄ to arbitrary constants, leading to

ωBPS = dzℵ ∧ dpℵ . (3.34)

In this gauge the BPS phase space is the holomorphic cotangent bundle to S. (It would

become a real symplectic manifold if we chose the real slice over M∗
3.) Alternatively, the

gauge fixing constraint

pℵ = γ ∂zℵχ , (3.35)

where κ is an arbitrary constant, leads to

ωBPS = γ ∂zℵ∂z̄ℵ̄χdzℵ ∧ dz̄ℵ̄ , (3.36)

proportional to the Kähler form ωS on S. The U(1) invariance can be enforced by per-

forming a further symplectic quotient. Thus, we may identify the BPS phase space as the

twistor space Z, equipped with its Kähler form ωZ . The difference between these two de-

scriptions of the BPS phase space presumably arises from singularities in the gauge-fixing

conditions, which we have not closely investigated. We note that the value of γ, irrelevant

for local, classical considerations, becomes important quantum mechanically, as it deter-

mines the normalization of ωBPS and hence the line bundle in which the wave function

should be valued.

3.4 Quantizing spherically symmetric BPS black holes

According to the discussion in section 3.1 and 3.3, we have two equivalent characterizations

of supersymmetric black holes at our disposal:
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i) Geodesic motion on the quaternionic-Kähler space M3, satisfying the quadratic con-

straints (3.14),

ii) Holomorphic geodesic motion on the Swann space S, with vanishing angular momen-

tum along the S3 in the R
4 fiber.

In the first formulation, it is natural to try and construct the BPS Hilbert space as a

subspace of L2(M3) annihilated by a quantum version of the constraints (3.14),

[

ǫA′B′∇AA′ ∇BB′ + κ ǫAB

]

Ψ = 0 . (3.37)

Here, ∇AA′ = V m
AA′∇m is the covariant derivative on M3, and we have allowed for a possible

quantum ordering ambiguity parameterized by the c-number κ. While this description has

the advantage of not introducing any gauge degrees of freedom, finding the general solution

of the second order partial differential system (3.37) is a priori difficult.

In the second formulation, the Hilbert space is a priori much simpler to construct,

since the linear supersymmetry conditions (3.32) can be quantized as

∂̄ℵΨ = 0 , (3.38)

where ∂̄ℵ are partial derivatives with respect to the antiholomorphic coordinates z̄ℵ̄ on S.

Moreover, the vanishing of the U(1) momentum in the fiber implies that Ψ should be a

homogeneous holomorphic function on S of vanishing degree classically. Equivalently, Ψ is

a holomorphic function on Z.

This leads to an immediate puzzle: globally, the only holomorphic functions on Z are

constants. More care is needed however: in particular, we did not include the fermionic

degrees of freedom, but imposed by hand the BPS constraints on the bosonic trajectory.

Including the fermions and the (super)ghosts in the one-dimensional sigma model (2.10)

may lead to a non-zero degree of homogeneity ℓ on S, so that Ψ is now a section of the line

bundle O(−ℓ) over Z, and possibly replace holomorphic functions by sheaf cohomology

classes, as usual in Kähler quantization (see e.g. [77]). Since the Kähler-Einstein metric

on the twistor space Z has two negative eigenvalues, it is natural to propose13 that Ψ is

valued in H1(Z,O(−ℓ)). A more detailed analysis of the BRST quantization of the one-

dimensional locally supersymmetric non-linear sigma model on M3 is left to a forthcoming

publication [52].

Remarkably, there exists a mathematical construction valid for any quaternionic-

Kähler manifold, sometimes known as the quaternionic Penrose transform [79, 48, 49],

which takes an element of the sheaf cohomology group H1(Z,O(−2)) to a solution of the

partial differential system (3.37). More generally, the Penrose transform maps classes in

H1(Z,O(−ℓ)) to sections Ψ(A′
1
A′

2
...A′

ℓ−2
)of Sℓ−2H, where Sℓ−2(H) is the (ℓ − 2)-fold sym-

metric power of the rank 2 bundle H on M3 introduced in (3.3).

13For very special N = 2 supergravities, the space H1(Z,O(−ℓ)) for large enough ℓ indeed furnishes a

unitary representation of G3, belonging to the quaternionic discrete series [78].
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Using the complex coordinate system introduced in section 3.2, it is easy to provide

an explicit integral representation of this transform, where the element of H1(Z,O(−ℓ)) is

represented by a holomorphic function g(ξI , ξ̃I , α) in the trivialization v♭ = 1 [49]:

Ψ(A′
1
A′

2
...A′

ℓ−2
)(U, zi, z̄j̄ , ζI , ζ̃I , σ) = 2ℓ eℓU

∮

dz

z
zδ/2 g(ξI(z), ξ̃I(z), α(z)) . (3.39)

where the integer δ counts the number of i such that A′
i = 1, minus the number of i such

that A′
i = 2, i.e. the helicity under U(1) ⊂ SU(2)H . In this formula, ξI , ξ̃I , α are to be

expressed as functions of the coordinates on M3 and z via the twistor map (3.29). The

integral runs over a contour around z = 0. In [49], it was shown that the left-hand side

of (3.39) is indeed a solution of the system of second order differential equations (3.37)

with a fixed value κ = −1 for ℓ = 2, and of a system of first order equations for ℓ > 2.

Thus the problem of determining the radial wave function of BPS black holes is reduced

to that of finding the appropriate class in H1(Z,O(−ℓ)). For a black hole with fixed electric

and magnetic charges qI , pI and zero NUT charge, irrespective of ℓ, the only eigenmode of

the generators (3.25) is up to normalization the “coherent state”

gp,q(ξ
I , ξ̃I , α) = ei(pI ξ̃I−qIξI) . (3.40)

Applying the Penrose transform (3.39) to the state (3.40) using (3.29), we find (now labeling

the different components of the wavefunction by δ)

Ψ(δ)
p,q(U, zi, z̄j̄ , ζI , ζ̃I , σ) = eipI ζ̃I−iqIζI

2ℓ eℓU

∮

dz

z
z

δ
2 exp

[

eU (zZ̄ + z−1Z)
]

, (3.41)

where Z = Zp,q(z
i, z̄j̄) is the central charge (3.13)

Z = eK(X,X̄)/2(pIFI(X) − qIX
I) , (3.42)

of the black hole. After analytic continuation of (ζI , ζ̃I) to i(ζI , ζ̃I) and (pI , qI) to −i(pI , qI),

as appropriate to the timelike reduction, the integral may be evaluated in terms of a Bessel

function,

Ψ(δ)
p,q(U, zi, z̄ ī, ζI , ζ̃I , σ) = 2ℓ+1π eipI ζ̃I−iqIζI

eℓU

(

Z̄

Z

)
δ
4

J δ
2

(

2eU |Z|
)

. (3.43)

This is the exact radial wave function for a black hole with fixed charges (pI , qI), at least

in the supergravity approximation.14

Before analyzing the physical content of (3.43), it is worthwhile pointing out that

it agrees in the semi-classical limit with direct quantization of the attractor flow equa-

tions (3.12): Identifying dU/dτ = pU/2 and dzi/dτ = gij̄pj̄, and quantizing the canonical

momenta pU and pj̄ as derivative operators 1
i ∂U and 1

i ∂z̄j̄ acting on Ψp,q(U, zi, z̄j̄), (3.12)

becomes

∂UΨp,q = eU |Z|Ψp,q , ∂z̄j̄Ψp,q = 2 eU ∂|Z|Ψp,q , (3.44)

14In the presence of R2-type corrections, the geodesic motion receives higher-derivative corrections, and

it is no longer clear how to quantize it.
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which integrates to Ψp,q = exp(2ieU |Z|). In the limit U → ∞, the phase of the wave

function is stationary at the classical attractor point (or points, should there be different

basins of attraction), as expected.

In the opposite near-horizon limit U → −∞, the effective Planck constant ~ ∼ e−U

goes to infinity, leading to large quantum fluctuations. The exact result (3.43) for the wave

function is well behaved at the horizon,

Ψp,q(U → −∞) ∼ e(ℓ−δ/2)U Z−δ/2
p,q /Γ(1 + |δ|/2) , (3.45)

but for fixed U is not peaked at the attractor values of the flows. Instead, it has local

extrema whenever |Z| does. This behavior may seem at odds with the classical attractor

behavior. The resolution of this paradox is that the radial evolution of the moduli corre-

sponds to the motion in an inverted potential V = −e2UVBH , which flattens out in the near

horizon limit U → −∞. (In fact, the radial flow is attractive in the BPS sector because it

reduces to a gradient flow. In the non-BPS sector, it is only attractive for extremal black

holes, at the cost of an infinite fine tuning of the initial velocities [58].)

By reintroducing the cone variable r, it is also possible to study the fluctuations of the

horizon area. Setting C2 = 0 in (2.25), the complete wave function on R
+ ×M3 is

Ψ(δ)
p,q(r, U, zi, z̄j̄) ∼ eℓU

(

Z̄

Z

)
δ
4

J 1

2

(r)J δ
2

(

2eU |Z|
)

. (3.46)

Setting A = 4πr2e−2U , this may be translated into a wave function for the moduli zi and

the area,

Ψ(δ)
p,q(r, U, zi, z̄j̄) ∼ eℓU

(

Z̄

Z

)
δ
4

J 1

2

(

eU
√

A/4π
)

J δ
2

(

2eU |Z|
)

. (3.47)

In the limit U → +∞, the phase is stationary with respect to U at A/4π = ±|Z|2 in

agreement with classical expectations. At fixed U however, the wave function is factorized

and maximal around A = 0.

At this stage, we can now discuss the norm of the wave function. Under the Pen-

rose transform, the Klein-Gordon inner product on M3 may be rewritten in terms of the

holomorphic function g as

〈Ψ|Ψ′〉 =

∫

dξIdξ̃Idα dξ̄Id ¯̃ξIdᾱ e(ℓ−2nV −4)KZ g(ξI , ξ̃I , α) g′(ξI , ξ̃I , α) , (3.48)

where the integral runs over values of ξI , ξ̃I , α, ξ̄I ,
¯̃
ξI , ᾱ such that the bracket in (3.26) is

strictly positive. Moreover quantization of the electric, magnetic and NUT charges implies

that the integral over the real parts of ξI , ξ̃I , α should run over a fundamental domain of

the Heisenberg group. As announced at the end of section 2.3, the inner product (3.48) is

formally positive definite.15

15Equation (3.48) is only formal, because g and g′ are not well defined functions but rather representatives

for cohomology classes. To make it well defined, the integration region in (3.48) has to be analytically

continued and interpreted in terms of contour integrals, but after doing so it is not obviously positive

definite anymore. For symmetric spaces, the unitarity of the corresponding representations has been proven

in some cases [80, 78].
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While we have not proven normalizability of the exact wave function (3.40), its norm

(if finite) is clearly unrelated to the exponential of the entropy: Choosing for g and g′ two

coherent states of charges (p, q) and (p′, q′) as in (3.40), the integral over the real parts of

(ξ, ξ̃, α) gives a product of Kronecker deltas δp,p′δq,q′ so the remaining integral is

∫

dζ dζ̃ dσ

[

Σ2(ζI , ζ̃I) +
1

16
σ2

]
ℓ
2
−(nV +2)

exp
(

−pI ζ̃I − qIζ
I
)

, (3.49)

(ζI , ζ̃I , σ now represent the imaginary parts of ξI , ξ̃I , α). For generic values of p, q, this

integral converges at infinity, while it converges at the origin for large enough ℓ. Homo-

geneity guarantees that the final result, if finite, will be a homogeneous function of the

charges p, q, of degree 2ℓ − 2(nV + 2).

4. Discussion

In this paper, we have laid out a systematic framework for the radial, mini-superspace,

quantization of stationary, spherically symmetric four-dimensional black holes. The key

device was the equivalence between radial evolution equations and geodesic motion on the

moduli space after reduction along three-dimensions. This equivalence holds in general

for gravity theories with an arbitrary number of Maxwell fields and scalar fields at two-

derivative order, and does not assume any supersymmetry. It offers a direct path towards

quantization, subject to the usual canonical quantum gravity caveats. It is worth stressing

that the wave function of a generic black hole with fixed charges is by no means unique,

nor should it be.

In the context of N = 2 supergravity, we have shown that the phase space of BPS solu-

tions is isomorphic to the twistor space Z of the moduli space M3 of the three-dimensional

theory, making it manifest that the BPS constraints are first class. We have proposed

to identify the BPS Hilbert space as the Kähler quantization of Z, with the necessary

amendments due to the non-positive definiteness of the metric on Z. This proposal is

mathematically natural in view of the Penrose transform, which relates cohomology classes

valued in a line bundle O(−ℓ) on Z to solutions of a set of linear partial differential equa-

tions on M3, which agree with the BPS constraints in the semi-classical limit (at least

when ℓ = 2). Ordering ambiguities are not entirely resolved, but parameterized by the

undetermined integer parameter ℓ corresponding to the spin of the wave function under

the SU(2)R symmetry group, which could in principle be determined by a more careful

treatment of the one-dimensional non-linear sigma model on M3 including fermions and

ghosts (see [52]). In this framework, the wave function is uniquely determined, and agrees

with semi-classical expectations in the limit far from the horizon. In the near-horizon

limit, quantum fluctuations become dominant, as the effective Planck constant is given by

~ ∼ e−U .

This systematic study enables us to examine the suggestion in [38] to identify the

topological string amplitude as the radial wave function for BPS black holes. Taken literally,

this statement cannot be true in our framework, if only because the functional dimension

of the Hilbert spaces of the BPS radial quantization (2nV + 3) and of the topological
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amplitude (nV + 1) are so different. Moreover, the electric and magnetic charge operators

of BPS black holes can be simultaneously diagonalized (when the NUT charge vanishes),

whereas the corresponding operators in the topological Hilbert space are inherently non-

commutative. One may however try to rescue the suggestion in [38] by noting that, after

lifting the geodesic motion on M∗
3 to the Swann space S (which includes the Killing spinor

ǫA′
on top of the usual moduli), there exists an even smaller subspace of the general phase

space T ∗(S), namely the 2nV + 4-real dimensional subset of the Swann space where the

anti-holomorphic coordinates z̄ℵ̄ take a fixed (arbitrary) value. Since S is hyperkähler,

it is in particular holomorphic symplectic, and the above mentioned space has a natural

symplectic form. Its quantization would in principle lead to a “super-BPS” Hilbert space of

functional dimension nV + 2, just one over the dimension nV + 1 of the topological Hilbert

space. Geometrically, it should be defined by a kind of “tri-holomorphy” condition on S
(just as the regular BPS Hilbert space corresponds to holomorphic functions, or sections,

on Z) whose precise definition is left to future work. If correct, this proposal leads to a

one-parameter generalization of the topological string, first outlined in [23], describing F-

term couplings in N = 4 supergravity on the vector and hypermultiplet branches in three

dimensions. The extra parameter can be thought of as the NUT charge k, the scale U of

the thermal circle, or, in the T-dual picture, as the string coupling in four dimensions.

The framework discussed in this paper is quite general, and can be further extended

in many different directions, some of which we hope to address in future publications:

1. Some of the considerations above can be made more explicit in a special class of

N = 2 supergravities with symmetric moduli spaces, M4 = G4/U(1) × H and

M3 = G3/SU(2) × M . This happens when the prepotential F is equal to the cu-

bic norm of a Euclidean Jordan algebra J of degree three, in which case the four-

dimensional U-duality group G4 is simply the conformal group of J that acts by

analytic automorphisms on the Hermitian symmetric space M4 = G4/U(1)×H and

leaves a light cone defined by the cubic norm invariant [60, 61, 81, 82]. The cor-

responding three-dimensional duality group G3 is of quaternionic noncompact real

form [60, 61] and can be constructed as the invariance group of a ”light-cone” defined

by a quartic norm associated with J 16 [83]. Some of these very special supergrav-

ity theories are known to correspond to the low energy limit of string theories, such

as the FHSV model with G4 = Sl(2, R) × SO(2, 10), G3 = SO(4, 12) [84]. In such

cases, the BPS and “super-BPS” Hilbert spaces furnish a special family of unitary

representations of G3, which as we explain in a separate paper [85], correspond to the

“quasi-conformal” and “minimal” representations previously constructed in the liter-

ature. G3 being a solution-generating symmetry for black holes in four dimensions, it

is natural to assume that a discrete subgroup G3(Z) remains as a spectrum-generating

symmetry in the putative quantum theory reducing to this very special supergravity

at low energies [82, 83, 86, 45]. This suggests that the partition function for the exact

BPS black hole degeneracies should be an automorphic form of G3(Z), attached to

the above unitary representation.

16More precisely, the quartic form is defined over the Freudenthal system defined by J .
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2. The same strategy can be applied to BPS black holes in N > 2 supergravities, where

the moduli spaces in 4 and 3 dimensions are always symmetric. The details however

differ, since the relevant twistor spaces are no longer two-sphere bundles, and the du-

ality groups G4 and G3 are in different real forms (e.g. the split real form for N = 8).

Moreover, there will exist different BPS Hilbert spaces depending on the number of

supersymmetries left unbroken by the black hole (In appendix C, we sketch some

basic features of these constructions). It would be interesting to understand in more

detail the corresponding unipotent representations of G3, construct explicit automor-

phic forms attached to these representations and compare their Fourier coefficients

with the microscopic degeneracies. This would generalize and possibly amend the

approach in [87] for 1/4-BPS dyons in N = 4 string theory, opening the possibility

to switch on chemical potentials for each electric or magnetic charge separately.

3. It is also of interest to apply this framework to non-BPS, extremal black holes, corre-

sponding to more general light-like geodesics on M∗
3, not satisfying the holomorphy

conditions. In view of their attractor behavior, it may be interesting to investigate

whether their wave function still exhibits some universality properties as U → ∞.

Black holes in gauged supergravities would also be interesting to analyze.

4. Multi-centered black holes are more challenging. Assuming stationarity, the reduc-

tion to the non-linear sigma model on the three-dimensional moduli space still goes

through. It would be interesting to formulate the general multi-centered solutions

as holomorphic maps from R
3 to the Swann or twistor space over M3, and possibly

generate new solutions in this fashion. It is also reasonable to expect that there

should be a “multi-particle” picture for multi-centered black holes, in terms of forked

geodesics on M∗
3. The quantization of these BPS solutions would then amount to

the “second quantization” of the one-black hole BPS Hilbert space.

5. By T-duality along the thermal circle, the quaternionic-Kähler moduli space arising

from the reduction of the vector multiplets to three dimensions is related to the

hypermultiplet moduli space in the dual string theory in four dimensions. It would

be interesting to relate the black hole wave function to D-instanton contributions to

couplings on the hypermultiplet branch satisfying the same generalized harmonicity

conditions [69].
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A. Reducing the supersymmetry conditions

In this appendix, we discuss the dimensional reduction of the supersymmetry conditions

in four dimensional, N = 2 supergravity on the time-independent ansatz (2.2), and further

on the spherically-symmetric ansatz (2.8).

The supersymmetry transformations of the four dimensional gravitini and gaugini

(ψµ, λa) to leading order in fermi fields are

δψRµ = DµεR +
1

4
eK/2XI(ImN )IJF J

νργ
νργµεL ,

δλa
R = −1

2
ea

iγ
µ∂µziεL +

1

4
f̄aI(ImN )IJF J

νργ
νρεR . (A.1)

Here, the gravitino ψµ, gaugini λa and supersymmetry parameter ε are four-dimensional

complex Dirac spinors, and the subscripts L,R denote their chiral projections under L,R =
1
2 (1 ± γ5). The derivative D = dxµDµ = D + Q is the sum of the Levi-Civita connection

D and Kähler connection Q, with

Q =
1

4
(∂ − ∂̄)K = −1

4

X̄NdX − dXNX

X̄NX
, (A.2)

and NIJ ≡ (Imτ)IJ . Solutions preserve some amount of supersymmetry when there exists

a non-zero “Killing spinor” ε such that the right-hand sides of (A.1) vanish.

To reduce the four dimensional variations (A.1) to three, and in turn one dimension,

we begin by collecting some useful data: The spin connection and Dirac matrices in the

timelike reduction ansatz (2.2) are

γt = e−Uγ0 − eUωi
(3)γi , γi = eU (3)γi ,

ω0b = −eUe0∂bU +
1

2
eUdxiFib , ωab = (3)ωab +

1

2
e3Ue0Fab − 2dx[a∂b]U . (A.3)

Here four dimensional curved and flat indices decompose as µ, ν, . . . = (t; i, j . . .), m,n, . . .

= (0; a,b . . .) while Fij = 2∂[iωj] is the graviphoton field strength and em = (e0, eU (3)ea)

with e0 = eU [dt + ω] the timelike vierbein. All three dimensional indices are manipulated

with the three dimensional metric and drei-bein. For dualizing we use the identity

γij =
ie2U

√

(3)g
εijk (3)γkγ

0γ5 , (A.4)

plus the relations between magnetic field strengths and magnetic potentials

F ≡ ⋆3dω = −e−4U (dσ + ζIdζ̃I − ζ̃IdζI) ,

F I ≡ ⋆3dAI
3 = −ζIF + e−2U (ImN )IJ (dζ̃J + (ReN )JKdζK) . (A.5)
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Equipped with the above data, the reduced spinor-covariant derivative is easily computed

dxµDµ ≡ D = (3)D +
1

2
eU (e0 (3)γjγ0 − e−Udxi

(3)γij)

(

∂jU − i

2
γ5e2UFj

)

. (A.6)

It also pays to calculate

F I
νργ

νρ = 2 (3)γiγ0(∂iζ
I + iγ5e2U [F I

i + ζIFi]) . (A.7)

Then orchestrating the gravitini variations parallel to the timelike vierbein e0 along with

the gaugini variations, we find

0 = ieK/2−UXI [/∂ζ̃I + NIJ /∂ζJ ]εL −
[

/∂U − i

2
e−2U (/∂σ − ζI /∂ζ̃I − ζ̃I /∂ζI)

]

γ0εR ,

0 = ea
i/∂ziεL + ie−U f̄aI [/∂ζ̃I + NIJ /∂ζJ ]γ0εR , (A.8)

with /∂ ≡ (3)γi∂i the three dimensional Dirac operator. Comparing to the expressions for

the quaternionic vielbein in (3.9c) yields the three dimensional Killing spinor equations

0 =











i/u /v

/ea i /E
a

−i /̄E
ā

/̄eā

−/̄v i/̄u











(

εL

γ0εR

)

= (3)γiV AA′

i εA′ , (A.9)

where the one-forms V AA′

a on M3 have been pulled back to the spatial slice. This result is

consistent with the SUSY transformations in (3.6).

We must still examine terms proportional to dxi in the gravitini variations. Terms

involving antisymmetrized pairs of Dirac matrices do not yield independent equations, so

we find

0 =

[

(3)D +

(

−1
2 v̄ iū

−iu −1
2v

)] (

εL

γ0εR

)

. (A.10)

Defining rescaled SUSY parameters ǫ

ε =

(

εL

γ0εR

)

≡ e−U/2

(

ǫ1

ǫ2

)

= e−U/2(ǫA′

) , (A.11)

yields

0 =

[

(3)D +

(

1
4(v − v̄) + Q iū

−iu −1
4(v − v̄) − Q

)] (

ǫ1

ǫ2

)

≡
(

(3)DǫA′

+ pA′

B′ǫB′
)

, (A.12)

where pA′

B′ is the sl(2, R) valued connection over the M∗
3 moduli space. Indeed the Swann

bundle is obtained as a C
2 fibration with this connection over M∗

3. But first we need to

compute the reduction from three dimensions to one quantum mechanical dimension. Let

us pause to collect the Killing spinor equations in three dimensions:

(3)γiV AA′

i ǫA′ = 0 = (3)DǫA′

+ pA′

B′ǫB′

. (A.13)
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The 3 → 1 reduction proceeds along the ansatz (2.8) whose dreibeine and spin con-

nections are

e1 = Ndρ , e2 = rdθ , e3 = r sin θdϕ ,

ω12 =
r′dθ

N
, ω13 =

r′ sin θdϕ

N
, ω23 = − cos θdϕ . (A.14)

We compute the covariant exterior derivative acting on spinors:

(3)D = (2)D + dρ
∂

∂ρ
− i

2

r′

N
(2)σ . (A.15)

Here the covariant exterior derivative on the sphere is

(2)D = dθ
∂

∂θ
+ dϕ

∂

∂ϕ
− 1

2
σ1σ2 cos θdϕ , (A.16)

where the two dimensional Dirac matrices are σ1 = iγ1γ2, σ2 = iγ1γ3, and (2)σ = σ1 (2)e1 +

σ2 (2)e2 = σ1dθ + σ2 sin θdϕ . We make the ansatz

ǫA′

= πA′

(ρ)χ , (A.17)

where χ is a vector in the two dimensional space of complex Killing spinors on S2, obeying

(2)Dχ =
1

2
(2)σχ . (A.18)

and all other fields (N, r, ζI , ζ̃I , a, U) depend only on ρ. This allows us to split (A.12) into

its radial and spherical parts. Requiring that χ be the most arbitrary Killing spinor on the

sphere the three dimensional Killing spinor equations (A.13) reduce to

0 = dρ V AA′

ρ πA′ ,

0 = dπA′

+ pA′

B′πB′

,

0 =
dr

N
− dρ . (A.19)

reproducing (3.32) and (2.16).

B. Minimal N = 2 supergravity

In this appendix, we work out the details for minimal N = 2 supergravity in four di-

mensions, with no vector multiplet, and trivial prepotential F = −i(X0)2. The resulting

moduli space in three dimensions is the symmetric space M∗
3 = SU(2, 1)/Sl(2)×U(1), or its

analytic continuation of the quaternionic-Kähler space M3 = SU(2, 1)/ SU(2)×U(1). The

same M3 describes the tree-level couplings of the universal hypermultiplet in 4 dimensions.

The classical Hamiltonian (2.23) reduces to

H =
1

4
(pU )2 − 1

2
e2U

[

(pζ̃ − kζ)2 + (pζ + kζ̃)2
]

+
1

4
e4Uk2 . (B.1)

– 28 –



J
H
E
P
0
9
(
2
0
0
7
)
0
5
6

The motion separates between the (ζ̃ , ζ) plane and the U direction, while the NUT potential

σ can be eliminated in favor of its conjugate momentum k = 2e−4U (σ̇ + ζ̃ ζ̇ − ζ ˙̃ζ). The

potential is depicted on figure 3 (left). The motion in the (ζ̃ , ζ) plane is that of a charged

particle in a constant magnetic field. The electric, magnetic charges and the angular

momentum J in the plane (not to be confused with that of the black hole, which vanishes

by spherical symmetry)

p = pζ̃ + ζk , q = pζ − ζ̃k , J = ζpζ̃ − ζ̃pζ , (B.2)

satisfy the usual algebra of the Landau problem,

[p, q] = −2k , [J, p] = q , [J, q] = −p , (B.3)

where p and q are the “magnetic translations”. The motion in the U direction is governed

effectively by

H =
1

4
(pU )2 +

1

4
e4Uk2 − 1

2
e2U

[

p2 + q2 − 4kJ
]

= C2 . (B.4)

At spatial infinity (τ = 0), one may impose the initial conditions U = ζ = ζ̃ = σ = 0.

The momentum pU at infinity equals the ADM mass, and J vanishes, so the mass shell

condition becomes
1

4
m2 +

1

4
k2 − 1

2
(p2 + q2) = C2 . (B.5)

In this simple case, the extremality condition C2 = 0 is equivalent to supersymmetry, since

the vielbein V is a 2 × 2 matrix. Equation (B.5) is the BPS mass condition, generalized

to non-zero NUT charge. Note that for a given value of p, q, there is a maximal value of k

such that M2 remains positive.

At the horizon U → −∞, τ → ∞, the last term in (B.1) is irrelevant, and one may

integrate the equation of motion of U , and verify that the metric (2.2) becomes AdS2 ×S2

with area

A = 4π(p2 + q2) , (B.6)

recovering the usual entropy S = A/4 of Reissner-Nordström black holes.

Since the universal sector is a symmetric space, there must exist three additional

conserved charges, so that the total set of conserved charges can be arranged in an element

Q in the Lie algebra g3 = su(2, 1) (or rather, in its dual g
∗
3). The physical origin of these

are the Ehlers and Harrison transformations [88]. The root diagram of SU(2, 1) is depicted

on figure 3. The Casimir invariants of Q are easily computed from the explicit form of the

Killing vectors [85]:

Tr(Q2) = H , det(Q) = 0 . (B.7)

The last condition ensures that the conserved quantities do not overdetermine the motion.

The co-adjoint action Q → hQh−1 of G3 on g
∗
3 relates different trajectories with the

same value of H. The phase space, at fixed value of H, is therefore the co-adjoint orbit

of a diagonalizable element of g
∗
3, of dimension 6 (the symplectic quotient of the full 8-

dimensional phase space by the Hamiltonian H). By the Kirillov-Kostant construction, it
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M

Figure 3: Left: Potential governing the motion along the U variable in the universal sector. The

horizon is reached at U → −∞. Right : Root diagram of the SU(2, 1) symmetries in the universal

sector.

carries a canonical symplectic form such that the Noether charges represent the Lie algebra

g3.

As we have just seen, BPS solutions have H = 0. The Cayley-Hamilton property for

3 × 3 matrices

Q3 − Tr(Q)Q2 − 1

2
[Tr(Q2) − (TrQ)2]Q − det(Q) = 0 , (B.8)

then implies that Q3 = 0 as a matrix equation in the fundamental representation. Q is

therefore non-diagonalizable, with Jordan normal form

Q = h ·







0 1 0

0 0 1

0 0 0






· h−1 . (B.9)

The stabilizer of the Jordan block is the parabolic group of lower triangular unimodular

matrices P . The BPS phase space is therefore Sl(3, C)/PC, which is indeed the twistor

space of17 M3 . Upon quantization, one finds that the BPS Hilbert space corresponds to

the quaternionic discrete series of SU(2, 1) [89]. The “super-BPS” phase space corresponds

to the case where Q is nilpotent of degree 2 (Q2 = 0), and leads to one of the minimal

representations of SU(2, 1).

The pattern found here continues to hold in very special N = 2 supergravities, where

M3 = G3/SU(2) × M is a symmetric quaternionic-Kähler space. The BPS phase space

is the twistor space Z = G3/U(1) × M . The sheaf cohomology H1(O(−ℓ),Z), for ℓ

large enough, furnishes a unitary representation of G3 of functional dimension 2nV + 3,

belonging to the quaternionic discrete series. For one special value of ℓ, it admits an

irreducible submodule which furnishes the minimal representation of G3, of functional

dimension nV + 2.

17It is a peculiarity of this model that the BPS and generic phase spaces are both six dimensional.
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C. BPS black holes and geodesic motion in N > 2 SUGRA

In this appendix, we confine ourselves to some preliminary remarks about the extension

of our formalism to supergravity theories with N ≥ 2 supersymmetry in 4 dimensions. A

common feature, shared with the N = 2 very special supergravity theories, is that the

moduli spaces M3 = G/K and M∗
3 = G/K∗ are symmetric (resp. affine symmetric)

spaces, and amenable to group and representation theory methods. A generalization of

the twistor space construction for non-quaternionic, symmetric spaces has been studied

in [90]. In general, there exist different classes of BPS geodesics, depending on the number

of supersymmetries left unbroken by the black hole, and classified by the orbit of the

momentum P under K. By the Kostant-Sekiguchi correspondence [91, 92], orbits of P

under KC are in one-to-one correspondance with nilpotent orbits of G and in turn related to

unitary representations of G by Kirillov’s orbit philosophy [93]. This provides a systematic

way to discuss the quantization of BPS black holes in N > 2 supergravity.

We start with N = 8 supergravity in four dimensions. The moduli space is the 70-

dimensional symmetric space M4 = E7(7)/SU(8). Upon reduction to three dimensions,

either along a space-like or a time-like direction, one obtains the 128-dimensional spaces

M3 =
E8(8)

SO(16)
, M∗

3 =
E8(8)

SO∗(16)
, (C.1)

where SO∗(16) is the real form of SO(16) with maximal non-compact group U(8). The

supersymmetry variations of the fermions in the non-linear sigma model on M∗
3 are [94]

δλA = ǫIΓ
I
AȦ

P Ȧ , (C.2)

where the SUSY parameter ǫI transforms in a vector representation of the R-symmetry

group SO∗(16), the momentum P Ȧ in a 128-dimensional real spinor representation of

SO∗(16) (corresponding to the tangent space to E8(8)/SO∗(16)), and λA is in the con-

jugate spinor representation 128. Depending on the orbit of the momentum P Ȧ under

SO∗(16), the number of unbroken symmetries will be different. Half-BPS states, preserv-

ing 16 out of the 32 supersymmetries, are obtained when P Ȧ is a pure spinor in Cartan’s

sense.18 This orbit has dimension 58, and quantizes into the minimal representation of

E8(8) constructed in [95, 96], with functional dimension 29. Quarter and 1/8-BPS black

holes are associated to 92-dimensional and 114-dimensional orbits of spinors of lesser purity.

In addition, there is an 112-dimensional orbit corresponding to 1/8-BPS black holes with

zero entropy. Upon quantization, these reduced phase spaces should lead to unipotent rep-

resentations of E8(8) with functional dimensions 46, 57, and 56, respectively, which should

be considered as the analytic continuations of corresponding representations of E8(−24)

constructed in [78]. It would be interesting to lift the geodesic motion to the generalized

twistor space E8(8)/SO(2)× SO(14), and determine in this way the most general 1/8-BPS

black hole solution in four dimensions.

We now turn to N = 4 supergravity with nv vector multiplets. The moduli space in

four dimensions is SU(1, 1)/U(1) × SO(6, nv)/SO(6) × SO(nv). After compactification to

18Recall that Cartan’s pure spinor of SO(2n) is isomorphic to C × SO(2n)/U(n).
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three dimensions, one obtains [46]19

M3 =
SO(8, nv + 2)

SO(8) × SO(nv + 2)
, M∗

3 =
SO(8, nv + 2)

SO(6, 2) × SO(2, nv)
. (C.3)

The supersymmetric variation of the fermions is now

δλa
A = ǫIΓ

I
AȦ

P Ȧa , (C.4)

where ǫI is a vector of the R-symmetry group SO(6, 2), and P Ȧa (a = 1 . . . nv), are a collec-

tion of nv spinors of SO(6, 2) corresponding to the tangent space of SO(8, nv+2)/SO(6, 2)×
SO(2, nv). Supersymmetric solutions can be obtained by requiring that the momentum fac-

torizes into P Ȧa = λȦva. Half-BPS trajectories are obtained when λȦ is a pure spinor of

SO(6, 2), and va has zero norm. The complex dimension of the space of pure spinors of

SO(6, 2) is 7 while that of null vectors is nv +1, so this orbit has complex dimension nv +7.

Upon quantization, we obtain the minimal representation of SO(8, nv+2), of real dimension

nV +7. It would be interesting to study the lift of BPS geodesics to the generalized twistor

space SO(8, nv + 2)/[U(4) × SO(nv + 2)]. Similar comments can be made for N = 3, 6

supergravity in four dimensions.
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